Towards a first measurement of the free neutron bound beta decay hydrogen atoms at a high flux beam reactor throughgoing beam tube

E. Gutsmiedl¹, W. Schott¹, K. Bernert¹, R. Engels², T. Faestermann¹, P. Fierlinger³, R. Gernhäuser¹, R. Hertenberger⁴, S. Huber¹, I. Konorov¹, B. Märkisch¹, S. Paul¹, C. Roick¹, H. Saul¹, S. Spasova¹, T. Udem⁵, A. Ulrich¹

¹Physik-Department, Technische Universität München, D-85748 Garching, Germany
 ²Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany
 ³Excellence Cluster Universe, Technische Universität München, D-85748 Garching, Germany
 ⁴Sektion Physik, Ludwig- Maximilian- Universität München, D-85748 Garching, Germany
 ⁵Max- Planck- Institut für Quantenphysik, D-85748 Garching, Germany

Two-body neutron decay

$$\label{eq:relation} \begin{split} n &\to H + \overline{\nu} \\ T_{H} = 325.7 \ eV, \ \beta = 0.83 \cdot 10^{-3}, \ BR = 4 \cdot 10^{-6} \\ Four hyperfine spin states exist \end{split}$$

(L. L. Nemenov, Sov. J. Nucl. Phys. 31, 115 (1980), L.
L. Nemenov and A. A. Ovchinnikova, Sov. J.
Nucl.Phys. 31, 659 (1980), W. Schott et al., Eur. Phys.
J. A30, 603 (2006))

83.2 % H(1s), 10.4 % H(2s)

Hyperfine spin states

Configurations 1 – 3 within SM (H(ν) = 1), population probabilities (44.14 %, 55.24 %, 0.622 % for gS = gT = 0) given by X = (1 + gS) / (λ - 2 gT), λ = gA / gV = -1.2761 (+14 –17) (D. Mund, B. Märkisch, M. Deissenroth, J. Krempel, M. Schumann, H. Abele, A. Petoukhov, and T. Soldner, Phys. Rev. Lett. 110, 172502 – Published 23 April 2013)

table 1

i	$\bar{\nu}$	n	р	e^{-}		W_i (%)	F	m_F	$ m_S m_I\rangle$
1	\leftarrow	\leftarrow	<u> </u>	\rightarrow	Fe/GT	$44.14 \pm .05$	0,1	0	$ +-\rangle$
2	\leftarrow	\leftarrow	\rightarrow	<u> </u>	GT	$55.24 \pm .04$	0,1	0	-+ angle
3	\leftarrow	\rightarrow	\rightarrow	\rightarrow	Fe/GT	$.622 \pm .011$	1	1	$ ++\rangle$
4	\rightarrow	\leftarrow	\leftarrow	\leftarrow	Fe/GT	0.	1	-1	angle
2'	\rightarrow	\rightarrow	\rightarrow	<u> </u>	Fe/GT	0.	0,1	0	$ -+\rangle$
1'	\rightarrow	\rightarrow	\leftarrow	\rightarrow	GT	0.	0,1	0	$ +-\rangle$
	-			-					

V-A, S,T added

$$A = \langle f|S|i \rangle \propto \Psi_n(0) G \cos \theta_c \bar{u}^m(p) \gamma_\alpha (1+\gamma_5) u^n(-q) \cdot$$

$$\cdot \quad \bar{u}^r(p_p)\gamma_\alpha(g_V + g_A\gamma_5)u^s(p_n)\delta(Q + q - p_n) \tag{2}$$

$$dW_A \propto \Sigma A A^{\dagger} \cdot \delta (Q + q - p_n) d\mathbf{Q} d\mathbf{q}$$
(3)

$$W_A \propto \sum_{n=1}^{\infty} |\Psi_n(0)|^2 \propto n^{-3} (L=0)$$
 (4)

$$W_A \propto (G^2 \cos^2 \theta_c / a_B^3) (\Delta - m)^2 (1 + 3\lambda^2)$$
(5)

$$W_{\beta} \propto G^2 \cos^2 \theta_c \Delta^5 (1+3\lambda^2)$$
 (6)

$$\Delta H \propto G \cos \theta_c \sum_{i=S,T} \bar{\psi}_p Q_i (g_i + g'_i \gamma_5) \psi_n \bar{\psi}_e Q_i \psi_{\bar{\nu}}$$
(7)

$$W_i, i = 1...3$$

$$W_{1} = 2C((1 - \lambda) + g_{S} + 2g_{T})^{2}$$

$$W_{2} = 8C(\lambda - 2g_{T})^{2}$$

$$W_{3} = 2C((1 + \lambda) + g_{S} - 2g_{T})^{2}$$

$$\sum_{i=1}^{3} W_{i} = 1, C^{-1} = 4((1 + g_{S})^{2} + 3(\lambda - 2g_{T})^{2})$$
(11)

table 2

Table 2. W_i (%) for various g_S and g_T .										
config. i	$g_S = 0, g_T = 0$	$g_S = 0.1, g_T = 0$	$g_S = 0, g_T = 0.02$							
1	44.114	46.44	43.40							
2	55.24	53.32	55.82							
3	.622	.238	.780							
4	0.	0.	0.							

$W_i, i = 1...4, H_{\bar{\nu}}$

 $W_1 = \frac{(\chi - 1)^2}{2(\chi^2 + 3)}, W_2 = \frac{2}{\chi^2 + 3}, W_3 = \frac{(\chi + 1)^2}{2(\chi^2 + 3)},$ $\chi = (1+q_S)/(\lambda - 2q_T)$ Left - right symmetric V + A model $x = \eta - \zeta, y = \eta + \zeta$: $W_4 = \frac{(x+\lambda y)^2}{2(1+3\lambda^2+x^2+3\lambda^2 y^2)}, H_{\bar{\nu}} = \frac{1+3\lambda^2-x^2-3\lambda^2 y^2}{1+3\lambda^2+x^2+3\lambda^2 y^2}$ (J.Byrne, Eur.Phys.Lett.56(2001)633)for $\zeta = 0, x = y = \eta = .036 : W_4 \approx \frac{\eta^2 (1+\lambda)^2}{2(1+3\lambda^2)} = 8.1 \cdot 10^{-6}$ $H_{\bar{\nu}} \approx 1 - 2\eta^2 = 1 - \frac{4(1+3\lambda^2)}{(1+\lambda)^2} \cdot W_4 = .997$ 8

aim

Present values : $|g_S| \le 6 \cdot 10^{-2} (C.L.68\%),$

(E. G. Adelberger et al., PRL 83(1999)1299).

-0.0026 < g_T / g_A < 0.0024 (C.L. 95 %) (R. W. Pattie, Jr., et al. PRC 88, 048501 (2013)

 $\eta \leq .036, |\zeta| \leq .03(C.L.90\%)$

(A.Gaponenko et al., PR D71(2005)071101),

(J. R. Musser et al., PRL 94(2005)101805).

 g_{s} upper limit should be reduced by a factor 10 H_{v} should be measured within 10⁻³

principal setup

Frm2 SR6 beam tube neutron and gamma flux

Abb. 28: Neutronenfluss in der horizontalen Ebene auf Höhe der Strahlachse des SR6

Abb. 29: Gammafluss in der horizontalen Ebene auf Höhe der Strahlachse des SR6

 $T_n < 0.6 \text{ eV}, E_{\gamma} < 0.5 \text{ MeV}$

H(2s) detection

- Measuring by quenching and Lyman- α detection(PM, channeltron)
- Charge exchanging to H^- within an Ar cell, selecting the H^- from H(1s) by $\vec{E_4}$, accelerating by $\vec{E_2}$ and focusing the H^- with a magnet. spectrom. onto a detector(CsI(TI), SDD)
- lonizing H(2s) to p using two transverse CW laser beams within curved mirror resonators and an \vec{E} field, selecting the p by $\vec{E_4}$, accelerating by $\vec{E_2}$ and focusing the p with a magn. spectr. onto a detector(Csl(Tl), SDD)

coated mirrors

H(2s) ionization by two laser beams

After the spin filter the H(2s) can be ionized by two crossed CW laser beams with curved mirrors $(\lambda_1(2s \to 10p) = 379.68 \text{ nm},)$ **Ti-sapphire** $\lambda_2(10p \to 27d) = 10.560 \mu m$) \mathbf{CO}_{2} and an \vec{E} field. The resulting proton can be analyzed by E_4 , accelerated and focused by $\vec{E_2}$, bent by $\vec{B_4}$ and detected, e. g., by a Csl(Tl) crystal.

2s-10p-27d H(2s) ionization

Doppler shifted frequency $\nu' = \nu \frac{\sqrt{1-\beta^2}}{1+\beta\cos\phi}$ for $\phi = \pi/2$ $\nu' = \nu \sqrt{1 - \beta^2} \left(2^{nd} \, order \right)$ $\Delta \nu' / \nu = \beta^2 / 2 = -3.44 \cdot 10^{-7} \text{ for } H(2s) (\beta = 0.83 \cdot 10^{-3})$ $\frac{d\nu'}{\nu} = -\frac{\beta \, d\beta}{\sqrt{1-\beta^2}} = -6.06 \cdot 10^{-9} \, for \, d\beta = 0.73 \cdot 10^{-5}$ $d\nu' = -4.785 \cdot 10^6 \, s^{-1} \, for \, \nu_{2s-10p} = 7.896 \cdot 10^{14} \, s^{-1},$ $d\phi = (d\nu'/\nu)/\beta = -7.3 \cdot 10^{-6}, i.e.,$

the photons must be perpendicular to the H(2s)

2s-10p-27d occupation, T=300 K

Power within resonators: 20 kW(laser 1), 100 W(laser 2)

 $E = (1 - R)^{-1} \approx 10^{6}$

BOB monoenergetic H atoms are to be measured, e.g., at a throughgoing beamtube (PIK) using an Ar gas cell (H(2s) \rightarrow H⁻, F. Roussel et. al., PRA 16, 1854 (1977)), electrostatic focusing elements, a pulsed electric deflector, a Bradbury Nielsen (BN) gate chopper and an MCP

PIK experimental setup

$H(2s) + Ar \rightarrow H^- + Ar^+$ cross section

σ (T_{H(2s)} = 0.33 keV) ≈ 5 · 10⁻¹⁷ cm²

FIG. 10. Electron-capture cross sections for $H(1^{2}S)$ and $H(2^{2}S)$ in argon (55-mrad detector's acceptance angle). σ_{g} -: Φ , present work; \blacksquare , Williams.⁵ σ_{m} -: Φ , present work; \square , Dose and Gunz[?] recalibrated; ---, theoretical calculation by Olson.¹⁴

 $72 \times d_{\odot}$

Ar cell schematically

Electrostatic quadrupole doublet

 Φ 3 cm aperture

Pulsed electric deflector

2 cm x 4 cm aperture

Bradbury Nielsen gate chopper

 $1.76 \, cm \times 1.26 \, cm$ aperture BN gate

Expected H⁻ rate

 $N_{H} = BR \left(\int \phi(z) \Omega(z) dV \right) / (4\pi \tau_n v_n) =$ $= BR \theta_1^2 r_s^2 \pi z_n \overline{\phi} / (2 \tau_n v_n) = 7.3 s^{-1}$ with $\theta_1 = 0.14 \ (8^\circ)$, $r_s = 1.5 \ cm$, $z_n = 0.5 \ m$, $\bar{\phi}$ = 10¹⁴ cm⁻² s⁻¹, $\dot{N}_{H(2s)}$ = 0.73 s⁻¹ p ($I_m = 0.176 \text{ m}, \sigma = 5 \cdot 10^{-21} \text{ m}^2$) = 8.4 $\cdot 10^{-3} \text{ mbar}$ P (H(2s) → H⁻) = n_{Ar} σ Δz = 0.18, n_{Ar} = 2 · 10²⁰ m⁻³ $\dot{N}_{H_{-}} = 0.13 \text{ s}^{-1}$ $P(H(2s) \rightarrow H^+) = 0.45$ (2 laser) $\dot{N}_{H+} = 0.33 \text{ s}^{-1}$

g_S

The g_S statistical error is

$$(\delta g_S)_{stat} = (\frac{\partial g_S}{\partial W_3})_{g_S = 6 \cdot 10^{-2}, g_T = 0} \cdot (\delta W_3)_{stat} = \frac{\lambda (\chi^2 + 3)^2}{-\chi^2 + 2\chi + 3} \cdot \sqrt{\frac{W_3}{N}}.$$

With $(\delta g_S)_{stat} = 6 \cdot 10^{-3} (\chi \approx 1/\lambda, W_3 = 3.683 \cdot 10^{-3})$

N = $4.4 \cdot 10^4$ results (\dot{N}_{H^+} = 0.33 s⁻¹), i. e., 1.5 d measuring time $H_{\bar{\nu}}$

The $H_{\bar{\nu}}$ statistical error is

$$\begin{split} (\delta H_{\bar{\nu}})_{stat} &= \frac{4(1+3\lambda^2)}{(1+\lambda)^2} \cdot \sqrt{\frac{W_4}{N}}. \quad With \\ (\delta H_{\bar{\nu}})_{stat} &= 1 \cdot 10^{-3} \\ (\eta = .036, \, W_4 = 8.1 \cdot 10^{-6}, \, H_{\bar{\nu}} = .997) \\ \mathsf{N} &= 8.3 \cdot 10^5 \text{ results (}\dot{\mathsf{N}}_{\mathsf{H}^+} = 0.33 \text{ s}^{-1}\text{),} \end{split}$$

i. e., 29 d measuring time

Breit- Rabi diagram of the 2 $S_{1/2}$ 2 $P_{1/2}$ hyperfine splitting

 $\alpha - \beta$ -states

 $|\alpha 11\rangle = |++\rangle$ $|\alpha 10\rangle = \cos \theta |+-\rangle + \sin \theta |-+\rangle$ $|\beta 1 - 1\rangle = |--\rangle$ $|\beta 00\rangle = \sin \theta |+-\rangle - \cos \theta |-+\rangle,$ $tan2\theta = B_c/B, B_c = 63.4 Gauss(2S)$ $N_{\alpha 10} = N_1 \cos^2 \theta + N_2 \sin^2 \theta$ $N_{\beta 00} = N_1 \sin^2 \theta + N_2 \cos^2 \theta$

 χ obtained by measuring $v_{\alpha\beta}=N_{\alpha10}/N_{\beta00}$ or $v_{\alpha\alpha}=N_{\alpha11}/N_{\alpha10}$

 χ

$$\begin{aligned} \boldsymbol{v}_{\boldsymbol{\alpha}\boldsymbol{\beta}} &= \frac{(\chi-1)^2 \cos^2 \theta + 4 \sin^2 \theta}{(\chi-1)^2 \sin^2 \theta + 4 \cos^2 \theta}, \ \boldsymbol{v}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} &= \frac{(\chi+1)^2}{(\chi-1)^2 \cos^2 \theta + 4 \sin^2 \theta} \\ with \, \chi \, either \ \chi &= 1 \pm 2 \sqrt{\frac{\sin^2 \theta - \boldsymbol{v}_{\boldsymbol{\alpha}\boldsymbol{\beta}} \cos^2 \theta}{\boldsymbol{v}_{\boldsymbol{\alpha}\boldsymbol{\beta}} \sin^2 \theta - \cos^2 \theta}} \ or \\ \chi &= \frac{-(1+\boldsymbol{v}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} \cos^2 \theta) \pm 2 \sqrt{\boldsymbol{v}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} (1-\boldsymbol{v}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} \sin^2 \theta \cos^2 \theta)}}{1-\boldsymbol{v}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} \cos^2 \theta} \end{aligned}$$

 W_4

 W_4 obtained by measuring $v_{\beta\beta} = N_{\beta1-1} / N_{\beta00}$

$$v_{\beta\beta} = N_4 / (N_1 \sin^2\theta + N_2 \cos^2\theta) =$$

= 2 N₄ / (N₁ + N₂ - cos2 θ (N₁ - N₂))

for B << B_c, $2\theta \approx \pi/2$, $\cos 2\theta \approx 0$ $v_{\beta\beta} = 2 N_4 / (N_1 + N_2) \rightarrow W_4 \approx (1/2) v_{\beta\beta}$

for B large, $\cos 2\theta \approx 1$ $v_{\beta\beta} = N_4 / N_2$

n > **2** background(1)

$$W(4s \to 2s) = 2 \cdot W(4s) \cdot W(4s \to 3p) \cdot W(3p \to 2s) \cdot \\ \cdot W(\Delta j = 0) W(\Delta j = \pm 1) = 3.07 \cdot 10^{-4} \\ W(4s) = 1.3\%, W(\Delta j = 0) = 2/5, W(\Delta j = \pm 1) = 3/5 \\ W(4s \to 3p) = A_{4s3p}/(A_{4s3p} + A_{4s2p}), \\ W(3p \to 2s) = A_{3p2s}/(A_{3p2s} + A_{3p1s}) \\ W(5s \to 2s) = 2 \cdot W(\Delta j = 0) W(\Delta j = \pm 1) \cdot W(5s) \cdot \\ \cdot (W(5s \to 4p) \cdot W(4p \to 2s) + W(5s \to 3p) \cdot W(3p \to 2s)) = \\ = 2.18 \cdot 10^{-4}, W(5s) = .7\%$$

n > 2 background(2)

- $\Sigma = W(4s \to 2s) + W(5s \to 2s) = 5.25 \cdot 10^{-4}$
- $.44\Sigma = 2.32 \cdot 10^{-4} \rightarrow \text{config. 4}$
- $.55 \Sigma = 2.90 \cdot 10^{-4} \to \text{config. 3}$
- being 7.9 % of $W_3 (\approx dW_3)$ background eliminated by ionizing these (n>2)s H atoms using a $\lambda = 1.458 \mu m$ laser

Mockup setup

Figure 1: Sketch of the mockup setup to measure the kinetic energy difference of H^- ions produced by charge exchanged H(2s) and H(1s) atoms within an Ar cell.

W.Schott et al., MLL Annual Report 2014,

(https://www.mll-muenchen.de/forschung/atomphysik/index.html)

Cup H⁻ current vs. spin filter magnet current

Figure 2: Cup H^- current I_c vs. spin filter magnet current. At the peak setting H(2s) and H(1s) atoms appear behind the filter, whereas at the valley setting (between the peaks) only H(1s) remain.

Cup current vs. counter field grid voltage

Figure 5: I_c vs. counter field grid voltage U_g . Upper curve: H^- from H(1s) and H(2s). Lower curve: H^- from H(1s).

Differentiated I_c vs. counter field grid voltage U_g .

Figure 6: dI_c/dU_g vs. U_g . a. Narrow single peak: H^- from H(1s). b. Wider double peak: H^- from H(1s) and H(2s).

Difference between T_{H-} and T_{H-}

```
H(2s): T_{H-} = T_{H} + 10.2 \text{ eV} =
= 335.9 eV
dT<sub>H</sub> = E<sub>0</sub> \beta dv/c = 5.7 eV
\Delta t / t = -(1/2) \Delta T_{H} / T_{H}, t = 4 \mu s
at s = 1m, \Delta t = 63 ns
```

A TOF spectrometer (BN gate chopper)

- Technique: Use two electric grid systems (fast switchable)
 - Principle as for neutron chopper system
 - _ "close" means electric field "on": deflecting H⁻ or quenching of H(2s)
 - _ "open" means no field: H⁻ or H(2s) survives passage
- Operation of two gates spatially separated by 1m using fast HV pulsing technique
 - FPGA based fast logical system drives HV source
 - Generates pulse-pattern with variable pulse length ("open" time), delay time between the two electric systems and repetition rate
 - Typical rise time of HV pulse: 10ns
 - Typical gate time: 200-500ns
 - Typical driving voltage: 200-500V

BN gate photo- etched grid

Newcut 434 East Union St. Newark, NY 14513, USA

T. Brunner et al., Int. Journal of Mass Spectrometry, vol. 309, 1 January 2012, p. 97-103.

Pulse generation for BN gate grids

BN gate trigger NIM signal, BN gate pulse

FPGA structure, schematics

2D pcb

3D pcb

BN gate chopper setup without active focusing

Photo of the chopper setup

The two BN gates are positioned in the CF100 cross pieces, the MCP is in the foreground

Protons passing the BN gates pulse slopes

500 eV proton TOF spectra. \pm 300 V grid voltages. ϕ 1 mm Iris1, ϕ 5 mm Iris2, ϕ 1 mm Iris3 diameters. a. Source H₂ pressure 5 · 10⁻⁴ mbar. Spike width 1.57 channels corresponding to dt = 3.83 ns and dT = 1.21 eV. b. Source H₂ pressure 5 · 10⁻³ mbar. 1.09 channels wide, dt = 2.66 ns, dT = 0.92 eV.

Proton source line profile at $p_{H2} = 5 \cdot 10^{-4}$ mbar

Proton source line profile at $p_{H2} = 5 \cdot 10^{-3}$ mbar

500 eV p TOF spectrum at $p_{H2} = 4 \cdot 10^{-4}$ mbar

± 300 V BN gate chopper grid voltages. φ1 mm Iris1, φ5 mm Iris2, φ5 mm Iris3 diameters

Secondary electron yield measurement

BN gate chopper setup modified by a degrader. Protons of keV energy pass thin foils of carbon, silver and plastics coated with MgO or LiF. The produced keV secondary electrons are measured by an MCP.

TOF spectra at
$$p_{H2} = 3 \cdot 10^{-3}$$
 mbar

± 300 V BN gate chopper grid voltages. φ5 mm Iris1, Iris2, Iris3 diameters. Blue. 18 keV sec. electrons, produced by 18.5 keV protons, having hit a 17 μg/cm² C foil coated with 10 Å LiF. Red. Open zero voltage foil frame 500 eV protons. 3.1 electron/ incident p.

Electrostatic focusing using a quadrupole doublet

Electrostat. quadrupole doublet, schematically

Q1, Q2: L=1cm, aperture radius r=1.5cm, l=3cm, Q1: $1/f_1 \approx k_1^2$ L; $k_1 = r^{-1} V(\Phi_1/U_s), Q2: f_2, k_2, \Phi_2, for f_1 = f_2 = f, \Phi_1 = \Phi_2 = \Phi, doublet focal$ length f^{*}

 $1/f^* = 1/f_1 - 1/f_2 + l/(f_1 f_2)$, $f^* = r^4 U_s^2/(L^2 \Phi^2 l) = f^2/l$, $l_1 = f^2/l - |f|$, $l_2 = f^2/l + |f|$

K. G. Steffen, *High Energy Beam Optics* (Intersience Publishers, New York, London, Sydney, 1965) 24 - 29

Quadrupole doublet focused 500 eV p TOF spectrum

 $p_{H2} = 7 \cdot 10^{-3}$ mbar. ± 300 V BN gate chopper grid voltages. ϕ 5 mm Iris1, Iris2, Iris3 diameters.

Q doublet focusing onto an electric deflector

Electric deflector, schematically

Two electrodes radii R1 and R2, reference particle radial coordinate r. Double- focusing with focal points in horizontal (x- y) and vertical planes being at the same position. $E(r)=UR_1R_2/(r^2(R_2-R_1))=2T/(qr)$, T=500 eV, r=5 cm, R₁ = 4 cm, R₂ = 6 cm, U=416.8 V

Deflector dispersion

60

Deflected intensity vs. Q doublet voltage Φ

Outlook

Functioning: BN gate chopper with electrostatic Q doublet focusing and electric deflector H(2s) detection by charge exchanging in Ar cell

Measurements: BOB H(1s) and H(2s) atoms (Ar cell, focusing element, deflector, BN gate chopper, MCP)

BOB H(2s) hyperfine state population probability (spin filter, Ar cell etc.)

$$\begin{split} & \mathsf{N}_{\alpha 11} / \, \mathsf{N}_{\alpha 10} \to \chi \, (\mathsf{g}_{\mathsf{S}}, \, \mathsf{g}_{\mathsf{T}}) \\ & \mathsf{N}_{\beta 1-1} / \, \mathsf{N}_{\beta 00}, \, \, \mathsf{N}_{\beta 1-1} / \, \, \mathsf{N}_{\alpha 10}, \, \mathsf{N}_{\beta 1-1} / \, \, \mathsf{N}_{\alpha 11} \to \mathsf{W}_{4} \, (\mathsf{H}_{\alpha 10}, \, \mathsf{M}_{\beta 1-1} / \, \, \mathsf{M}_{\alpha 11} \to \mathsf{W}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{W}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{W}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{W}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{W}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{W}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{W}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11}, \, \mathsf{M}_{\alpha 11}, \, \mathsf{M}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 11} \to \mathsf{M}_{4} \, (\mathsf{H}_{\alpha 1$$